VMware Cloud Foundation in a Lab

VMware Cloud Foundation (VCF) is basically a package containing vSphere, vSAN, NSX-T, and vRealize Suite elegantly managed by something called SDDC Manager. Everything is installed, configured and upgraded automatically without much user intervention. VCF is based on VMware Validated Design, so you get a well-designed, thoroughly tested and consistent deployment. Upgrading is also a lot easier as you don’t have to check interoperability matrices and upgrade order of the individual components – Just click on the upgrade button when a bundle is available. For someone who has implemented all these products manually many times, VCF is a blessing. Tanzu and Horizon are also supported to run on VCF, and almost everything else you can run on vSphere. Many cloud providers are powered by VCF, for instance VMware Cloud on AWS.

VCF requires at least four big vSAN ReadyNodes and 10 gigabit networking with multiple VLANs and routing, so how can you deploy this is in a lab without investing in a lot of hardware? VMware Cloud Foundation Lab Constructor (VLC) to the rescue! VLC is a script that deploys a complete nested VCF environment onto a single physical host. It can even set up a DHCP server, DNS server, NTP server and a router running BGP. It is also very easy to use, with a GUI and excellent support from its creators and other users in their Slack workspace. It is created by Ben Sier and Heath Johnson.

Here is a nice overview taken from the VLC Install Guide:

VLC requires a single physical host with 12 CPU cores, 128 GB RAM, and 2 TB of SSD. I am lucky enough to have a host with dual Xeon CPUs (20 cores) and 768 GB RAM. I don’t use directly attached SSD, but run it on an NFS Datastore on a NetApp FAS2240-4 over 10 gig networking. I can deploy VCF 4.2 with 7 nested ESXi hosts in 3 hours and 10 minutes on this host.
 
VLC lets you choose between three modes: Automated, Manual and Expansion Pack. Automated will deploy VCF including all dependencies, while Manual will deploy VCF, but you will have to provide DNS, DHCP, NTP and BGP. Expansion Pack can be used to add additional ESXi hosts to your deployment after you have installed VCF, for instance when you want to create more clusters or expand existing ones.
 
This is what the VLC GUI looks like:

So far, I have only used the Automated and the Expansion Pack modes, and they both worked flawlessly without any issues. Just make sure you have added valid licenses to the json file like the documentation tells you to do. Some people also mess up the networking requirements, so please spend some extra time studying that in the Installation Guide and reach out if you have any questions regarding that.

It can also be challenging for some to get the nested VCF environment to access the Internet. This is essential to be able to download software bundles used to upgrade the deployment, or to install software like vRealize Suite. Since VLC already requires a Windows jump host which is connected to both my Management network as well as the VCF network, I chose to install “Routing and Remote Access” which is included in Windows Server. Then I set the additional IP address 10.0.0.1 on the VCF network adapter. This IP is used as the default gateway for the router deployed in VCF if you also typed it into the “Ext GW” field in VLC GUI. The last step was to configure NAT in “Routing and Remote Access” to give all VCF nodes access to the Internet. I could then connect SDDC Manager to My VMware Account and start downloading software bundles.

Here are some of the things I have used VLC to do:

Deployed VCF 3.10, 4.0, 4.1 and 4.2 with up to 11 ESXi hosts

Being able to deploy earlier versions of VCF has been very useful to test something on the same version my customers are running in production. Many customers don’t have proper lab gear to run VCF. It has also been great to be able to test upgrading VCF from one version to another.

Experimented with the Cloud Foundation Bring-Up Process using both json and Excel files

The bring-up process is automated, but it requires the configuration, like host names, cluster names, IP addresses and so on, to be provided in an Excel or json file. All required details can be found in the Planning and Preparation Workbook.

Stretched a cluster between two Availability Zones

All my VCF customers are running stretched clusters so beings able to run this in my lab is very useful. This requires at least 8 vSAN nodes, 4 per availability zone. Currently this must be configured using the VCF API, but it is not that difficult, and SDDC Manager includes a built in API explorer which can be used to do this directly in the GUI if you want to.

Created additional Clusters and Workload Domains

Creating more clusters and workload domains will be required by most large customers and also by some smaller ones. It is supported to run regular production workloads in the management workload domain, but this is only recommended for smaller deployments and special use cases.

Commissioned and decommissioned hosts in VCF

Adding and removing ESXi hosts in VCF requires us to follow specific procedures called commissioning and decommissioning. The procedures validate that the hosts meet the criteria to be used in VCF so that it is less likely that you run into problems later. I have had some issues decommissioning hosts from my Stretched Cluster, and VMware has filed a bug to engineering to get this resolved in a future release. The problem was that the task failed at “Remove local user in ESXi host”, which makes sense since the host went up in flames. Workaround was to deploy a new host with the same name and IP, then decommissioning worked. Not a great solution. It is also possible to remove the host directly from the VCF database, but that is not supported. If you run into this issue in production, please call VMware Support.

Expanded and shrunk Clusters – including Stretched Clusters

Adding ESXi hosts to existing clusters, or removing hosts, requires you to follow specific procedures. Again, stretched clusters must be expanded and shrunk using the VCF API.

Upgraded all VCF components using the built-in Lifecycle Management feature

Upgrading VCF is a fun experience for someone used to upgrade all the individual VMware products manually. The process is highly automated, and you don’t have to plan the upgrade order or check which product version is compatible with the others. This is taken care of by SDDC Manager. I have successfully upgraded all the products in VCF including the vRealize Suite.

Tested the Password and Certificate Management features

VCF can automate changing the passwords on all its components. This includes root passwords on ESXi hosts, vCenter SSO accounts and administrative users for the various appliances. You can choose to set your own password or have VCF set random passwords. All passwords are stored in SDDC Manager and you can look them up using the API or from the command line. This requires that you know SDDC Manager’s root password and a special privileged user name and the privileged password. These are obviously not rotated by SDDC Manager.

Changing SSL certificates is a daunting task, especially when you have many products and appliances like you do in VCF. SDDC Manager has the option to replace these for you automatically. You can connect SDDC Manager directly to a Microsoft Certificate Authority or you can use an OpenSSL CA which is built in. If you don’t want to use either of those, there is also support for any third-part CA, but then you have to generate CSR files, copy those over to the CA, generate the certificate files, copy those back and install them. This also requires all the files to be present in a very specific folder structure inside a tar.gz file, so it can be a bit cumbersome to get it right. Also note that all the methods seems to generate the CSR for NSX-T Manager without a SAN, so unless you force your CA to include a SAN, the certificate for NSX-T will not be trusted by your web browser. This has been an issue for several years, so I am puzzled that it still hasn’t been resolved. When generating CSRs for NSX-T in environments without VCF, I never use the CSR generator in NSX-T Manager to avoid this issue. vSphere Certificate Manager in VCSA works fine for this purpose.

Tested the NSX-T Edge Cluster deployment feature

SDDC Manager has a wizard to assist in deploying NSX-T Edge Clusters including the Edge Transport Nodes and the Tier-1 and Tier-0 Gateways required to provide north-south routing and network services. The wizard makes sure you fulfil all the prerequisites, then it will ask you to provide all the required settings like names, MTU values, passwords, IP addresses and so on. This helps you to get a consistent Edge Cluster configuration. Note that VCF is not forcing you to deploy all NSX-T Edge Clusters using this wizard, so please reach out if you want to discuss alternative designs.

Deployed vRealize Suite on Application Virtual Networks (AVN)

All the vRealize Suite products are downloaded in SDDC Manager like any VCF software bundle. You then have to deploy vRealize Suite Lifecycle Manager, which will be integrated with SDDC Manager. VMware Workspace ONE Access must then be installed before you can deploy any of the vRealize Suite products. It is used to provide identity and access management services. It is downloaded as an install bundle in SDDC Manager, but it is actually deployed from vRealize Suite Lifecycle Manager, same as the rest of the products like vRealize Log Insight, vRealize Operations and vRealize Automation. Application Virtual Networks (AVN) is just NSX-T Overlay networks designed and automatically deployed for running the vRealize Suite. This gives you all the NSX-T benefits like load balancing, mobility, improved security and disaster recovery. AVN is optional as you can choose to deploy the vRealize Suite on VLAN backed networks as well.

Deployed Workload Management and Tanzu Kubernetes Cluster

Deploying Tanzu in VCF is not an automated process, but there is a wizard helping you to fulfil the following prerequisites:

  • Proper vSphere for Kubernetes licensing to support Workload Management
  • An NSX-T based workload domain deployed
  • At least one NSX-T Edge cluster
  • IP addresses for pod networking, Services, Ingress and Egress traffic
  • At least one Content Library

You have to select an NSX-T based, non-vLCM enabled workload domain, and the wizard will then search for any compatible clusters in this domain. It will then validate the cluster, and if it is ok you are directed to complete the deployment in the vSphere Client manually. The VCF docs have specific instructions on how to do this.

VLC has been very helpful when troubleshooting certain issues for my VCF customers, and when preparing for the VMware Cloud Foundation Specialist exam.

You can download the latest version of VLC, which is 4.2, from here.

Please make sure to read the Install Guide included in the zip file.

It is also possible to download earlier versions of VLC, which can be really useful for testing upgrades, or if you want to simulate a customer’s environment.

VLC VersionDownload Link
4.10https://tiny.cc/getVLC410bits
4.0.1https://tiny.cc/getVLC401bits
4.0http://tiny.cc/getVLC40bits
3.91-3.10http://tiny.cc/getVLC310bits
3.8.1-3.9http://tiny.cc/getVLC38bits

If you give VLC a go and successfully deploy a VCF instance, please send a screen shot of your installation to SDDC Commander in the VLC Support Slack workspace, and he will send you some awesome stickers!

I highly recommend the following articles for more information about VLC:

Deep dive into VMware Cloud Foundation – Part 1 Building a Nested Lab

Deep dive into VMware Cloud Foundation – Part 2 Nested Lab deployment

If you don’t have licenses for VCF, I recommend signing up for a VMUG Advantage membership which gives you a 365 days evaluation license, and a lot more.

Cheers.

Introduction to my Labs

Yes, I intentionally wrote Labs, as this post will introduce you to both my home lab and to the lab environment running in my employers data centers.

I have just built a small home lab for the first time in many years. A lab is very important for someone like me who is testing new technology on a daily basis. During the last few years, my employers have provided lab equipment, or I have rented lab environments in the cloud, so the need for an actual lab running in my house was not there. My current employer, Proact, has an awesome lab which I will tell you more about later.

There are two reasons why I built a small lab at home now:

  1. I want to be able to destroy and rebuild the lab whenever I want to without impacting anything in the corporate lab which we run almost like an enterprise production environment with lots of dependencies. This is a good thing most of the time, but can be limiting some times, for example when I want run the very latest version of something without having time to do much planning and coordination. And since it is a lab after all, something may break from time to time, and that usually happens when I urgently need to test something.
     
  2. I want to set up Layer 2 VPN from my home lab to the corporate lab to test and demonstrate real hybrid cloud use-cases. I can then migrate workloads back and forth using vMotion. We have this already set up in the corporate lab and my colleague Espen is using the free NSX-T Autonomous Edge as an L2 VPN Client to stretch several VLANs between his home lab and the corporate lab.

I didn’t spend a lot of time investigating what gear to get for my home lab, and I also wanted to keep cost at a sensible level. I came up with the following bill of materials after doing some research on what equipment would be able to run ESXi 7.0 without too much hassle. 

  • 2 x – NUC Kit i7-10710U Frost Canyon , NUC10i7FNH
  • 2 x – Impact Black SO-DIMM DDR4 2666MHz 2x32GB
  • 2 x – SSD 970 EVO PLUS 500GB
  • 2 x – 860 EVO Series 1TB
  • 2 x – CLUB 3D CAC-1420 – USB network adapter 2.5GBase-T
  • 2 x – SanDisk Ultra Fit USB 3.1 – 32GB

First I had to install the disk drives, the memory, and upgrade the NUCs firmware. All that went smoothly, and the hardware seemed to be solid, except for the SATA cable which is proprietary and flimsy. Be careful when opening and closing these NUCs to avoid breaking this cable. Then ESXi 7.0 was installed on the SanDisk Ultra Fits from another bootable USB drive. The Ultra Fits are nice to use for boot drives since they are very small physically. After booting ESXi for the first time, I installed the “USB Network Native Driver for ESXi” to get the 2.5 Gbps USB NICs to work. The NICs were directly connected without using a switch, since my switch doesn’t support 2.5GBase-T. This was repeated on both my NUCs as I wanted to set them up in a two node cluster.

vCenter Server 7.0 was installed using “Easy Install” which creates a new vSAN Datastore and places the VCSA there. Quickstart was used to configure DRS, HA and vSAN, since I felt lazy and hadn’t tested this feature before. vSAN was configured as a 2-Node Cluster and the Witness Host was already installed in VMware Workstation running on my laptop. I configured Witness Traffic Separation (WTS) to use the Management network for Witness traffic.

I configured the vSAN Port Group to use the 2.5 Gbps NICs and then used iperf in ESXi to measure the throughput. They managed to push more than 2 Gbps so I am satisfied with that, but latency was a bit higher than expected at round-trip min/avg/max = 0.244/0.748/1.112 ms. I was also not able to increase the MTU higher than the standard 1500 bytes which is a bit disappointing, but these NICs were almost half the price of other 2.5GBase-T USB NICs so I guess I can live with this for now since I only plan to use them for vSAN traffic. I will buy different cards if I need to use them with NSX in the future, since Geneve requires at least 1600 bytes MTU. There are several USB cards which have been proven to work with ESXi 7.0 supporting 4000 and even 9000 MTU.

This is all I have had time to do with the new home lab so far, but will post updates here when new tings are implemented, like NSX-T with L2VPN.

I have spent a lot more time in the corporate lab running in Proact’s data centers, and here are some details on what we have running there. This is just a short introduction, but I plan to post more details later. This lab is shared with the rest of the SDDC Team at Proact, like Christian, Rudi, Espen, and a few others.

Hardware

  • 16 x Cisco UCS B200 M3 blade servers, each with dual socket Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz and 768 GB RAM.
  • 3 x Dell vSAN Ready Nodes (currently borrowed by a customer, but Espen will soon return them to the lab).
  • Cisco Nexus 10 Gigabit networking.
  • 32 TB of storage provided by NFS on NetApp FAS2240-4.
  • Two physical sites with routed connectivity (1500 MTU).

Software

  • vSphere 7.
  • 3 x vCenter Server 7.
  • vRealize Log Insight 8.1.1.
  • vRealize Suite Lifecycle Manager.
  • vRealize Operations 8.1.1.
  • vRealize Automation 7.6 with blueprints to deploy stand-alone test servers, as well as entire nested lab deployments including ESXi hosts, vCenter and vSAN.
  • phpIPAM for IP address management.
  • Microsoft Active Directory Domain Services, DNS and Certificate Services.
  • NSX-T Data Center 3.1.
    • Logical Switching with both VLAN backed and Overlay backed Segments.
    • 2-tier Logical routing.
    • Load Balancing, including Distributed Load Balancer to support Tanzu.
    • Distributed Firewall.
    • Layer 2 VPN to stretch L2 networks between home labs and the corporate lab.
    • IPSec VPN to allow one site to access Overlay networks on the other site.
    • NAT to allow connectivity between public and private networks.
    • Containers configured with Tanzu.
  • vSphere with Tanzu running awesome modern containerized apps like Pacman.
  • Horizon 8 providing access to the lab from anywhere.
  • Veeam Backup & Replication 10.
  • VMware Cloud Foundation (VCF) 4.2 – 8 nodes Stretched Cluster.

That’s it for now – Thanks for reading, and please go to the Contact page to reach out to me.